CENTRAL AUTOMORPHISMS OF A FINITE p-GROUP(1)

BY ALBERT D. OTTO

1. Introduction. In recent years there has been an increased interest in the relationship between the order of a finite group G and the order of the automorphism group A(G) of G [1], [6], [7], [8]. Some of the interest has been focused on the role played by the group $A_c(G)$ of central automorphisms for a finite p-group G; in particular, when G is a p-group of class 2 with no abelian direct factors [2]. The purpose of this paper is (1) to use $A_c(G)$ to show that the order |G| of G divides |A(G)| for certain p-groups G and (2) to determine bounds on $|A_c(G)|$ for a p-group G with no abelian direct factors.

All groups will be finite groups. p will denote a prime. If G is a group, then G_2 denotes the derived group, I(G) denotes the group of inner automorphisms, Z(G) denotes the center (or Z, if no ambiguity is possible), and, in addition, $|G|_p$ denotes the highest power of p dividing |G|.

2. PN-groups. H. Fitting [5] developed a procedure for determining the number of central automorphisms for a group with a chief series. Throughout the rest of this paper this procedure and the associated notation will be used for the case of a p-group. Suppose G is a p-group. Decompose G into the direct product of two subgroups P and B where P is abelian and B has no nontrivial abelian direct factors and is nonabelian. For each positive integer k, let a_k (resp. b_k , resp. c_k) denote the number of times the number p^k appears in the invariants of P (resp. B/B_2 , resp. Z(B)), let

$$d_k = a_{k+1}^2 - a_k^2 + (a_k + c_k) \cdot \sum_{x \ge k} (a_x + b_x) + (a_k + b_k) \cdot \sum_{x > k} (a_x + c_x),$$

and let

$$\psi(a_k) = 1,$$
 $a_k = 0,$
= $(p^{a_k} - 1)(p^{a_k} - p) \cdots (p^{a_k} - p^{a_k-1}),$ $a_k \neq 0.$

Fitting then showed that $|A_c(G)| = \prod_{k=1}^{\infty} p^{kd_k} \cdot \psi(a_k)$. We note that if nonabelian p-groups without abelian direct factors are considered, then this equation is greatly simplified. Thus, the following definition for p-groups is made.

Received by the editors February 14, 1966.

⁽¹) This research was supported in part by the National Science Foundation under Grant NSF GP-1652.

DEFINITION 1. G is a PN-group $\stackrel{d}{=}$ G is a nonabelian p-group and has no non-trivial abelian direct factors.

An immediate consequence which has already been demonstrated [2] is that if G is a PN-group, then $A_c(G)$ is a p-group. Since our major objective is to determine when |G| divides |A(G)| for a p-group G, Theorem 1 shows that we may restrict our attention to PN-groups. But first a lemma is needed.

LEMMA 1(2). Suppose P is an abelian p-group of order p^n , $n \neq 2$. Then p^n divides |A(P)| if and only if P is not cyclic.

Proof. Since P is abelian, $A(P) = A_c(P)$ and, hence, $|A(P)|_p = |A_c(P)|_p$. In the computation of $|A_c(P)|_p$ we shall use the prescribed notation. Let p^r be the exponent of P. Since P is abelian, $b_k = c_k = 0$ for all k. Also $d_k = 0$ and $\psi(a_k) = 1$ for k > r whereas for $k \le r$, $d_k = a_{k+1}^2 - a_k^2 + a_k \cdot \sum_{x \ge k} a_x + a_k \cdot \sum_{x > k} a_x = a_{k+1}^2 + 2a_k \cdot \sum_{x > k} a_x$. Thus $|A_c(P)|_p = p^p$, where

$$B = \sum_{k=1}^{r} \left\{ k \left[a_{k+1}^{2} + 2a_{k} \cdot \sum_{x>k} a_{x} \right] + \frac{1}{2} a_{k} (a_{k} - 1) \right\}.$$

Since it is known [4] that if P is cyclic then p^n does not divide |A(P)|, we assume P is not cyclic. To show that p^n divides |A(P)| it is sufficient to show that $B \ge n$. It is necessary to consider two cases.

Case (a). Suppose r=1. Then $a_1=n$ and $a_k=0$ for all k>1. Since P is not cyclic and $n \neq 2$, we have $a_1=n \geq 3$. So $B=\frac{1}{2}a_1(a_1-1) \geq a_1=n$.

Case (b). Suppose r > 1. Since $\sum_{x > k} a_x > 0$ for k where $1 \le k \le r - 1$, we have $\sum_{k=1}^{r-1} (ka_k \cdot \sum_{x > k} a_x) \ge \sum_{k=1}^{r-1} ka_k$. In addition because $\sum_{k=1}^{r-1} ka_{k+1}^2 \ge (r-1)a_r^2$, $\sum_{k=1}^{r-1} ka_{k+1}^2 + \sum_{k=1}^{r-1} (ka_k \cdot \sum_{x > k} a_x) \ge (r-1)a_r^2 + \sum_{k=1}^{r-1} (ka_k \cdot \sum_{x > k} a_x)$. Then since P is not cyclic, either $a_n > 1$ or there exists k, $1 \le k \le r - 1$, such that $a_k > 0$. Thus in either case we have $(r-1)a_r^2 + \sum_{k=1}^{r-1} (ka_k \cdot \sum_{x > k} a_x) \ge ra_r$. So

$$B = \sum_{k=1}^{r} k a_{k+1}^{2} + \sum_{k=1}^{r} \left(k a_{k} \cdot \sum_{x > k} a_{x} \right) + \sum_{k=1}^{r} \left(k a_{k} \cdot \sum_{x > k} a_{x} \right) + \sum_{k=1}^{r} \frac{1}{2} a_{k} (a_{k} - 1)$$

$$\geq \sum_{k=1}^{r-1} k a_{k+1}^{2} + \sum_{k=1}^{r-1} \left(k a_{k} \cdot \sum_{x > k} a_{x} \right) + \sum_{k=1}^{r-1} \left(k a_{k} \cdot \sum_{x > k} a_{x} \right)$$

$$\geq r a_{r} + \sum_{k=1}^{r-1} k a_{k} = \sum_{k=1}^{r} k a_{k} = n.$$

Thus $B \ge n$.

⁽²⁾ The author is indebted to the referee for a shorter, more elegant proof of Lemma 1.

THEOREM 1. If the p-group G is the direct product $P \otimes B$ of the two subgroups P and B where P is abelian of order p^r and B is a PN-group, then $p^r \cdot |A(B)|_p$ divides |A(G)|.

Proof. Let $T = A(P) \otimes A(B)$. Then $|T|_p = |A(P)|_p \cdot |A(B)|_p$. At this point we consider three cases.

Case (a). Suppose P is not cyclic and $|P| \neq p^2$. Then by Lemma 1 p^r divides |A(P)|. Thus, $p^r \cdot |A(B)|_p$ divides $|T|_p$ which divides |A(G)|.

In considering the two remaining cases we look at $|T \cdot A_c(G)|_p$. Since A(P) is a subgroup of $A_c(G)$, $T \cap A_c(G) = A(P) \otimes (A(B) \cap A_c(G)) = A(P) \otimes A_c(B)$. Because A will be either cyclic or of order p^2 in the two remaining cases, we assume $|A(P)|_p = p^{r-1}$. So

$$|T \cdot A_{c}(G)|_{p} = (|T|_{p} \cdot |A_{c}(G)|_{p})/|T \cap A_{c}(G)|_{p}$$

$$= (|A(P)|_{p} \cdot |A(B)|_{p} \cdot |A_{c}(G)|_{p})/(|A(P)|_{p} \cdot |A_{c}(B)|_{p})$$

$$= (p^{r-1} \cdot |A(B)|_{p}) \cdot (|A_{c}(G)|_{p}/(p^{r-1} \cdot |A_{c}(B)|_{p})).$$

Since $|T \cdot A_c(G)|$ divides |A(G)|, it is sufficient to prove

$$|A_c(G)|_p > |A_c(B)|_p \cdot p^{r-1} = |A_c(B)| \cdot p^{r-1}.$$

Case (b). Suppose P is cyclic of order p^r . Using the notation described before, $|A_c(G)| = \prod_{k=1}^{\infty} p^{kd_k} \cdot \psi(a_k)$ and $|A_c(B)| = \prod_{k=1}^{\infty} p^{kd_k'}$ where

$$d'_k = c_k \cdot \sum_{x \geq k} b_x + b_k \cdot \sum_{x > k} c_x.$$

Since P is cyclic, $|A_c(G)|_p = \prod_{k=1}^{\infty} p^{kd_k}$. Because $d_k = d'_k$ for k > r to compare $|A_c(G)|_p$ and $|A_c(B)|$, it is sufficient to compare $\sum_{k=1}^r kd_k$ and $\sum_{k=1}^r kd'_k$. It is easy to see that

$$\begin{split} \sum_{k=1}^{r} k d_k &= \sum_{k=1}^{r-2} k d_k + (r-1) d_{r-1} + r d_r \\ &= \sum_{k=1}^{r-2} k (d_k' + c_k + b_k) + (r-1) (d_{r-1}' + c_{r-1} + 1 + b_{r-1}) \\ &+ r \Big(d_r' + \sum_{k \ge r} b_k + \sum_{k \ge r} c_k \Big) \\ &= \sum_{k=1}^{r} k d_k' + (r-1) + \sum_{k=1}^{r-1} k (c_k + b_k) + r \Big(\sum_{k \ge r} b_k + \sum_{k \ge r} c_k \Big). \end{split}$$

Since $c_k \ge 0$ and $b_k \ge 0$ for all k and since some $b_k > 0$,

$$\sum_{k=1}^{r-1} k(c_k+b_k)+r\Big(\sum_{x\geq r} b_x+\sum_{x\geq r} c_x\Big)>0.$$

Consequently, $\sum_{k=1}^{r} k d_k > \sum_{k=1}^{r} k d_k' + r - 1$. Thus, $|A_c(G)|_p > |A_c(B)| \cdot p^{r-1}$.

Case (c). Suppose P is of order p^2 . By Case (b) we assume that P is elementary abelian of order p^2 . Now we have $\psi(a_1) = (p^2 - 1)(p^2 - p)$ and $\psi(a_x) = 1$ for $x \neq 1$. Hence $|A_c(G)|_p = p^{1+d_1} \cdot \prod_{k=2}^{\infty} p^{kd_k}$. Because $d_k = d'_k$ for k > 1 to compare $|A_c(G)|_p$ and $|A_c(B)|$, it is sufficient to compare $1 + d_1$ and d'_1 . It is easily checked that $d_1 = d'_1 + 2(\sum_{x \geq 1} (b_x + c_x)) > d'_1$. Thus $d_1 + 1 > d'_1 + 1$. Hence,

$$|A_c(G)|_p > |A_c(B)|_p \cdot p = |A_c(B)| \cdot p^{r-1}.$$

COROLLARY 1.1. Suppose G is a PN-group and P is an abelian p-group of order p^r . If p^n divides |A(G)|, then p^{n+r} divides $|A(G \otimes P)|$.

We now use $A_c(G)$ to show that |G| divides |A(G)| for certain PN-groups G. For this we make the following definition, which was first introduced by Blackburn [3]. Let n and m be positive integers where $n \ge m \ge 3$.

DEFINITION 2. G is in $ECF(m, n, p) \stackrel{d}{=} G$ is a p-group of order p^n and class m-1, G/G_2 is elementary abelian, and $|G_i/G_{i+1}|=p$ for $i=2, 3, \ldots, m-1$; G_i is the *i*th member of the descending central series.

THEOREM 2. Let m and n be positive integers such that $n \ge m > 3$. If G is a PN-group in ECF(m, n, p), then p^n divides |A(G)|.

Proof. Since $|G_i/G_{i+1}| = p$ for $i=2, 3, \ldots, m-1$ and $|G| = p^n$, $|G/G_2| = p^{n+2-m}$. Using the notation described before, we have $b_1 = n+2-m$ and $b_x = 0$ for $x \ne 1$. Thus, $d_1 = (n+2-m) \cdot \sum_{x \ge 1} c_x$ and $d_k = 0$ for $k \ne 1$. Hence, $|A_c(G)| = p^F$ where $F = (n+2-m) \cdot \sum_{x \ge 1} c_x$. Since some $c_k > 0$, $F \ge n+2-m$ and, consequently, $|A_c(G)| \ge p^{n+2-m}$. Let $p^r = |Z|$ and $p^t = |Z_2/Z|$; Z_i is the ith member of the ascending central series of G where $Z_1 = Z$. Since G/Z_{m-2} has order at least p^2 and Z_i/Z_{i-1} has order at least p for $i = 1, 2, \ldots, m-2$, we have $1 \le t \le (n+2) - (r+m)$. Hence $|Z_2/Z| \le p^{(n+2)-(r+m)}$. Then

$$|I(G) \cdot A_{c}(G)| = (|I(G)| \cdot |A_{c}(G)|)/|I(G) \cap A_{c}(G)|$$

$$\geq (|G/Z| \cdot p^{n+2-m})/|Z_{2}/Z|$$

$$\geq (p^{n-r} \cdot p^{n+2-m})/p^{(n+2)-(r+m)} = p^{n}.$$

Hence, |G| divides |A(G)|.

COROLLARY 2.1. If G is a p-group of maximal class of order $\geq p^4$, then |G| divides |A(G)|.

3. Bounds on $|A_c(G)|$ for a PN-group G. We will now prove two theorems which show the influence of the center and commutator factor group in determining the number of central automorphisms for a PN-group. These two theorems will then yield bounds on $|A_c(G)|$ for a PN-group G.

THEOREM 3. If G is a PN-group of order p^n where G/G_2 has order p^s , then $p^A \ge |A_c(G)| \ge p^C$ where

$$A = s \cdot \sum_{x \ge 1} c_x$$

and

$$C = 2 \cdot \sum_{x \ge 1} c_x, \quad \text{when } s = 2,$$

$$= 2c_1 + \sum_{k=2}^{s-2} (k+1)c_k + s \cdot \sum_{x \ge s-1} c_x, \quad \text{when } s > 2.$$

Note 1. It should be noted that if there exists a PN-group H of order p^n where H/H_2 is elementary abelian of order p^s and Z(G) is isomorphic to Z(H), then $|A_c(H)| = p^A$.

Note 2. In addition it should be noted that if there exists a PN-group K of order p^n where K/K_2 is of type (s-1, 1) and Z(G) is isomorphic to Z(K), then $|A_c(K)| = p^C$.

Proof. We observe first that if s=2, then G/G_2 is elementary abelian of order p^2 and, hence, $|A_c(G)| = p^A = p^C$. Thus, we assume s>2. To help in the calculation of $|A_c(G)|$ the following notation is introduced. Suppose G/G_2 is of type $(n(1), n(2), \ldots, n(t))$, where $n(1) \ge n(2) \ge \cdots \ge n(t)$. In addition suppose

$$n(1) = n(2) = \cdots = n(s_1),$$

 $n(s_1 + 1) = n(s_1 + 2) = \cdots = n(s_2),$ where $n(s_1) > n(s_2)$
 \vdots
 $n(s_{\alpha-1} + 1) = n(s_{\alpha-1} + 2) = \cdots = n(s_{\alpha}) = n(t),$ where $n(s_{\alpha-1}) > n(s_{\alpha}).$

For convenience we set $s_0 = 0$. Then $\sum_{i=1}^t n(i) = s$, $\sum_{j=1}^{\alpha} (s_j - s_{j-1}) n(s_j) = s$, and $n(s_1) > n(s_2) > \cdots > n(s_{\alpha})$. Extended calculations then show that $|A_c(G)| = p^B$ where

$$B = \sum_{1 \le k \le n(s_{\alpha})} (ks_{\alpha})c_k$$

$$+ \sum_{i=2}^{\alpha} \sum_{n(s_i) < k < n(s_{i-1})} (ks_{i-1})c_k$$

$$+ \sum_{i=1}^{\alpha} \left[s_i c_{n(s_i)} + (s_i - s_{i-1}) \left(\sum_{x > n(s_i)} c_x \right) \right] n(s_i).$$

Therefore, it remains for us to show that $A \ge B \ge C$. To facilitate this comparison, we let A(k) (resp. B(k), resp. C(k)) be the coefficient of the element c_k in the term A (resp. B, resp. C) for each k. Consequently, it is sufficient to show that $A(k) \ge B(k) \ge C(k)$ for each k.

We shall first compare B(k) and C(k). If n(1)=s-1, then n(2)=1 and, hence, B(k)=C(k) for all k. Thus, we assume n(1)< s-1. Also since G/G_2 is not cyclic, $s_{\alpha} \ge 2$. The rest of the proof will be divided into parts.

Part (1). Suppose $1 \le k \le n(s_{\alpha})$. Then $B(k) = ks_{\alpha}$ and C(k) = 1 + k since $k \le n(s_{\alpha}) < n(s_1) \le s - 2$. Since $s_{\alpha} \ge 2$, $B(k) \ge C(k)$.

Part (2). Suppose $k = n(s_j)$ where $1 \le j \le \alpha - 1$. Then $C(n(s_j)) = n(s_j) + 1$ and $B(n(s_j)) = s_j n(s_j) + \sum_{i=j+1}^{\alpha} n(s_i)(s_i - s_{i-1})$. Since $n(s_i) \ge 1$ and $s_i - s_{i-1} \ge 1$ for i = j+1, ..., α and $s_j \ge 1$, $B(n(s_j)) \ge n(s_j) + 1 = C(n(s_j))$.

Part (3). Suppose $n(s_i) < k < n(s_{i-1})$ where $2 \le j \le \alpha$. Then C(k) = k+1 and

$$B(k) = ks_{j-1} + \sum_{i=j}^{\alpha} (s_i - s_{i-1})n(s_i).$$

As in Part (2), $B(k) \ge k + 1 = C(k)$.

Part (4). Suppose $n(s_1) < k \le s - 2$. Then C(k) = k + 1 and

$$B(k) = \sum_{i=1}^{\alpha} n(s_i)(s_i - s_{i-1}) = s.$$

But $k \le s-2$ implies $k+1 \le s-1 < s$. So $B(k) \ge C(k)$.

Part (5). Suppose k > s-2. Then C(k) = s and $B(k) = \sum_{i=1}^{\alpha} n(s_i)(s_i - s_{i-1}) = s$. So $B(k) \ge C(k)$.

We have now shown that $B \ge C$. It remains for us to show $A \ge B$, or equivalently, $A(k) \ge B(k)$ for each k. We note that A(k) = s for each k. Therefore, we must show that $s \ge B(k)$ for each k. We will again divide the proof into parts.

Part (i). Suppose $k > n(s_1)$. Then $B(k) = \sum_{i=1}^{n} (s_i - s_{i-1})n(s_i) = s$.

Part (ii). Suppose $k = n(s_i)$ where $1 \le j \le \alpha - 1$. Then

$$B(n(s_i)) = s_i n(s_i) + \sum_{i=j+1}^{\alpha} n(s_i)(s_i - s_{i-1}).$$

Since $n(s_1) > n(s_2) > \cdots > n(s_{j-1}) > n(s_j)$, we have that

$$s_{j}n(s_{j}) + \sum_{i=j+1}^{\alpha} n(s_{i})(s_{i} - s_{i-1}) = \left(\sum_{i=1}^{j} (s_{i} - s_{i-1})\right)n(s_{j}) + \sum_{i=j+1}^{\alpha} n(s_{i})(s_{i} - s_{i-1})$$

$$\leq \sum_{i=1}^{j} n(s_{i})(s_{i} - s_{i-1}) + \sum_{i=j+1}^{\alpha} n(s_{i})(s_{i} - s_{i-1})$$

$$= \sum_{i=1}^{\alpha} n(s_{i})(s_{i} - s_{i-1}) = s.$$

Hence, $s \ge B(k)$.

Part (iii). Suppose $k = n(s_{\alpha})$. Then $B(k) = s_{\alpha}n(s_{\alpha})$. As before we have that $n(s_{\alpha})s_{\alpha} = n(s_{\alpha}) \sum_{i=1}^{\alpha} (s_i - s_{i-1}) \le \sum_{i=1}^{\alpha} n(s_i)(s_i - s_{i-1}) = s$. Hence, $s \ge B(k)$.

Part (iv). Suppose $1 \le k < n(s_{\alpha})$. Then $B(k) = ks_{\alpha}$. Since $k < n(s_{\alpha})$, $ks_{\alpha} \le n(s_{\alpha})s_{\alpha} \le s$. So $s \ge B(k)$.

Part (v). Suppose $n(s_j) < k < n(s_{j-1})$ where $2 \le j \le \alpha$. Then

$$B(k) = ks_{j-1} + \sum_{i=j}^{\alpha} (s_i - s_{i-1})n(s_i) \leq n(s_{j-1})s_{j-1} + \sum_{i=j}^{\alpha} (s_i - s_{i-1})n(s_i) \leq s.$$

THEOREM 4. If G is a PN-group of order p^n where Z has order p^r , then

$$p^A \geq |A_c(G)| \geq p^C$$

where

$$A = r \cdot \sum_{x \ge 1} b_x$$

and

$$C = \sum_{k=1}^{r-1} kb_k + r \cdot \sum_{x \ge r} b_x.$$

Note 3. It should be observed that if there exists a PN-group H of order p^n where Z is elementary abelian of order p^r and G/G_2 is isomorphic to H/H_2 , then $|A_c(H)| = p^A$.

Note 4. Also if there exists a PN-group K of order p^n where Z is cyclic of order p^r and G/G_2 is isomorphic to K/K_2 , then $|A_c(K)| = p^c$.

Proof. The proof of Theorem 4 corresponds very closely to the proof of Theorem 3 and is, consequently, omitted.

From Theorems 3 and 4 we are able to derive bounds on $|A_c(G)|$.

COROLLARY 4.1. If G is a PN-group, then G has at least p^2 and at most p^{rs} central automorphisms where p^s is the order of G/G_2 and p^r is the order of Z.

COROLLARY 4.2. If G is a nonabelian p-group, then p^2 divides $|A_c(G)|$.

In addition Theorems 3 and 4 lead to some immediate results on when the order of a *PN*-group will divide the order of its automorphism group. Some of these are as follows.

COROLLARY 4.3. Suppose G is a PN-group of order p^n . Suppose Z is elementary abelian of order p^r . Then |G| divides |A(G)| under any one of the following conditions:

- (1) $r \ge n/2$,
- (2) $p^r \ge |Z_2/Z|$,
- (3) If class of $G = m \ge 3$, then $n+1-2r \le m$.

Proof. By direct calculation (see Note 3) we have $|A_c(G)| = p^A$ where $A = r \cdot \sum_{x \ge 1} c_x$. Since G/G_2 is not cyclic, $\sum_{x \ge 1} c_x \ge 2$. Thus, $|A_c(G)| \ge p^{2r}$. Next we observe that $|A_c(G) \cdot I(G)| \ge p^{n+r}/|Z_2/Z|$. The proofs of these three statements now follow.

BIBLIOGRAPHY

- 1. J. E. Adney, On the power of a prime dividing the order of a group of automorphisms, Proc. Amer. Math. Soc. 8 (1957), 627-633.
 - 2. J. E. Adney and T. Yen, Automorphisms of a p-group, Illinois J. Math. 9 (1965), 137-143.
 - 3. N. Blackburn, On a special class of p-groups, Acta Math. 100 (1958), 45-92.
 - 4. W. Burnside, Theory of groups of finite order, 2nd ed., Dover, New York, 1955.
- 5. H. Fitting, Die gruppe der zentralen automorphismen einer gruppe mit hauptreihe, Math. Ann. 114 (1937), 355-372.
- 6. J. C. Howarth, On the power of a prime dividing the order of the automorphism group of a finite group, Proc. Glasgow Math. Assoc. 4 (1960), 163-170.
- 7. R. Ree, The existence of outer automorphisms of some groups. II, Proc. Amer. Math. Soc. 9 (1958), 105-109.
- 8. W. R. Scott, On the order of the automorphism group of a finite group, Proc. Amer. Math. Soc. 5 (1954), 23-24.

STATE UNIVERSITY OF IOWA,
IOWA CITY, IOWA
LEHIGH UNIVERSITY
BETHLEHEM, PENNSYLVANIA